Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. As an example, the maximal sub-rectangle of the array: 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 is in the lower left corner: 9 2 -4 1 -1 8 and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
40 -2 -7 0 9 2 -6 2-4 1 -4 1 -18 0 -2
Sample Output
15 题目的大意就是说在给出的n*n个数组成的矩形中饭找出一个小矩形,使得这些数的和最大。 这道题可以借鉴求最大和的连续子序列的方法来做; 在i,j行之间求出每一列这之间的和,那么这个和的最大连续子序列和就是所求 如样例: 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 假如在第一行到第三行之间求每一列的和那就是 -13 1 -17 3 这个序列的最大连续区间的和就是举行的高为1-3行之间的最大矩形里的和 那么我们就只需要枚举所有行的区间就行了,连续区间最大和的球阀复杂度是O(n),枚举所有行是O(n^2),所以总的复杂度就是O(n^3)。n<=100所以不会超时
1 #include2 #include 3 #include 4 #include 5 #define MAX(a,b) (a) > (b)? (a):(b) 6 #define MIN(a,b) (a) < (b)? (a):(b) 7 #define mem(a) memset(a,0,sizeof(a)) 8 #define INF 1000000007 9 #define MAXN 10510 #define MAXC 100511 using namespace std;12 13 int N,ma[105][105];14 int sumU[105][105],sum[105];15 int main()16 {17 while(~scanf("%d",&N))18 {19 mem(sumU);20 int i,j,ans = -INF;21 for(i=1;i<=N;i++)for(j=1;j<=N;j++)22 {23 scanf("%d",&ma[i][j]);24 sumU[i][j]=sumU[i-1][j]+ma[i][j];25 }26 int Top,Down;27 for(Top=0;Top 0?0:(sumU[Down][1]-sumU[Top][1]);34 for(i=2;i<=N;i++)35 {36 if(min<0)min=(sumU[Down][i]-sumU[Top][i]);37 else min+=(sumU[Down][i]-sumU[Top][i]);38 if(max